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Abstract—In many of the least developed and developing countries, a multitude of infants continue to suffer and die from vaccine-

preventable diseases and malnutrition. Lamentably, the lack of official identification documentation makes it exceedingly difficult to

track which infants have been vaccinated and which infants have received nutritional supplements. Answering these questions could

prevent this infant suffering and premature death around the world. To that end, we propose Infant-Prints, an end-to-end, low-cost,

infant fingerprint recognition system. Infant-Prints is comprised of our (i) custom built, compact, low-cost (85 USD), high-resolution

(1,900 ppi), ergonomic fingerprint reader, and (ii) high-resolution infant fingerprint matcher. To evaluate the efficacy of Infant-Prints, we

collected a longitudinal infant fingerprint database captured in four different sessions over a 12-month time span (December 2018 to

January 2020), from 315 infants at the Saran Ashram Hospital, a charitable hospital in Dayalbagh, Agra, India. Our experimental results

demonstrate, for the first time, that Infant-Prints can deliver accurate and reliable recognition (over time) of infants enrolled between the

ages of 2-3 months, in time for effective delivery of vaccinations, healthcare, and nutritional supplements (TAR = 95.2%@ FAR = 1.0%

for infants aged 8-16 weeks at enrollment and authenticated 3 months later).1

Index Terms—Infant mortality, infantid, biometrics for global good, high resolution fingerprint reader, high resolution fingerprint matcher
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1 INTRODUCTION

THERE are more than 600 million children living world-
wide between the ages of 0-5 (years) [3] with an addi-

tional 353,000 more newborns setting foot on the planet
each and every day [4]. A majority of these births take place
in the poorest regions of the world, where it is likely that
neither the infants nor their parents will have access to any
official identification documents.2 Even if the infant has
obtained an official ID, it may be fraudulent or shared with
others [5], [6], [7]. Without legitimate and verifiable identifi-
cation, infants are often denied access to healthcare, immu-
nization, and nutritional supplements. This is especially
problematic for infants3 (newborns to 12 months), given
that they are at their most critical stage of development.

The downstream problems caused by lack of proper
infant ID in the planet’s least-developed countries can be
quantitatively seen in the flat lining of global vaccination
coverage. In particular, from 2015 to 2018, the percentage of
children who have received their full course of three-dose
diphtheria-tetanus-pertussis (DTP3) routine immunizations
remains at about 85 percent [18]. This falls short of the
GAVI Alliance (formerly Global Alliance for Vaccines and
Immunization4) target of achieving global immunization
coverage of 90 percent by 2020. According to UNICEF,
25 million children do not receive proper annual vaccina-
tion, leading to 1.5 million child deaths per annum from
vaccine-preventable diseases.5 The World Health Organiza-
tion (WHO) suggests that inadequate monitoring and
supervision and lack of official identification documents
(making it exceedingly difficult to accurately track vaccina-
tion schedules) are key factors.6

Infant identification is also urgently needed to effec-
tively provide nutritional supplements. The World Food
Program (WFP), a leading humanitarian organization
fighting hunger worldwide, assists close to 100 million
people in some of the poorest regions of the world.7 How-
ever, often the food never reaches the intended beneficia-
ries because of fraud in the distribution system [5], [6],
[7]. For example, the WFP found that in Yemen, a country
with 12 million starving residents, food distribution
records are falsified and relief is being given to people
not entitled to it, preventing those who actually need aid
from receiving it [6], [7].

Accurate and reliable infant recognitionwould also assist in
baby swapping prevention,8 identifying missing or abducted
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2. Selecting and assigning a name to the newborns can be a drawn
out process in developing countries in which parents consult immedi-
ate family members or even an astrologer for a proper name. While
deciding upon a name, the infant is simply referred to as “baby” or
“daughter of”, or “son of”.

3. Infants are considered to be in the 0-12 months age range,
whereas, toddlers and preschoolers are within 1-3 and 3-5 years of age,
respectively [8].

4. https://bit.ly/1i7s8s2
5. https://www.unicef.org/immunization
6. https://bit.ly/1pWn6Gn
7. https://evaw-un-inventory.unwomen.org/fr/agencies/wfp
8. https://bit.ly/2U5eAHn
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children, and access to government benefits, healthcare, and
financial services throughout an infant’s lifetime.

As we show in the next section, fingerprint recogni-
tion [19], is the only way to accurately and reliably establish
an infant’s identity. While fingerprint recognition is now a
mature field and billions of teenagers and adults have been
using it to authenticate themselves, children, particularly
infants and toddlers, cannot yet utilize fingerprint recogni-
tion to get a unique and verifiable digital identity.

1.1 Fingerprints for Infant-ID

Conventional identification documents (paper records) are
impractical for infant recognition in many of the least dev-
eloped and developing countries because they are not
securely linked to a specific infant. Furthermore, they may
be fraudulent [5], lost, or stolen. We posit that a more
accurate, robust, and verifiable means of infant recogni-
tion is through the use of biometric recognition (Fig. 1). Of the
prominent biometric traits, we posit that fingerprint is the
most promising for infant recognition. This is because,
(i) face recognition is challenging due to the rapid aging of
the infant’s face from infanthood to childhood [20] (Fig. 2).
(ii) Iris recognition [21] is impractical because the infant will
often be sleeping or crying. (iii) Footprint recognition [22],
[23] requires removing socks and shoes and cleaning the
infant’s feet, and finally, (iv) palmprint recognition [24]
requires opening an infant’s entire hand where the concav-
ity of the palm makes it difficult to image. In contrast, fin-
gerprint recognition has already been shown to be practical
for young children [15]. Furthermore, fingerprints have
been shown to be (i) unique [25], [26], (ii) present at
birth [27], [28], [29], (iii) stable over time in terms of recogni-
tion accuracy [30], [31], and (iv) a socially acceptable bio-
metric trait to capture [15].

Fingerprint recognition of infants comes with its own
challenges and requirements, including:

1) A compact, low-cost, ergonomic, high-resolution (to
accommodate small inter-ridge spacings), and high
throughput fingerprint reader.

2) A robust and accurate fingerprint matcher to
accommodate low quality (distorted, dirty, wet,
dry, motion blurred), high-resolution fingerprint
images.

As such, prevailing COTS fingerprint recognition sys-
tems, designed primarily for an adult population, are not
feasible for infant fingerprint recognition. Our goal then is
to develop an end-to-end fingerprint recognition system,
specifically designed for infants.

2 RELATED WORK

Table 1 summarizes prior work on infant and child finger-
print recognition. These studies are summarized as follows:

� Beginning in 2004, the Netherlands Organization for
Applied Scientific Research (TNO) conducted a
study [10] wherein they concluded that “it was not
possible to obtain clear fingerprints from children
under 4 years of age due to low fidelity in the ridge
pattern on their fingers.

� A pilot program called BIODEV II was initiated
in 2007 for capture, storage and verification of bio-
metric data for Schengen visa applicants [11]. Experi-
mental results based on the fingerprints of 300
children acquired in Damascus (Syria) and Ulan
Bator (Mongolia), show that it is challenging to
acquire fingerprints of children below 12 years of
age.

� UltraScan conducted a study from 2006 to 2009
which modeled the growth of the fingerprints of chil-
dren as they grow into their adolescence [12]. How-
ever, no experimental results were provided on
child fingerprint capture and recognition.

� The Joint Research Center of the European Commis-
sion published a technical report [14] in 2013 on fin-
gerprinting 2,611 children between 0 to 12 years of
age. Fingerprints were acquired using 500 ppi finger-
print readers while passport processing by the Por-
tuguese government. The report concluded that

Fig. 1. Face images (top row) and corresponding left thumb fingerprints (bottom row) of six different infants under 3 months of age. Face images were
captured by a Xiaomi MI A1 smartphone camera and fingerprint images were captured by the 1,900 ppi RaspiReader designed by Engelsma et al.
[1], [2] at the Saran Ashram Hospital, a charitable organization in Dayalbagh, Agra, India.
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TABLE 1
Related Work on Child Fingerprint Recognition

Study Year Fingerprint
Resolution

#
Subjects

Age at
Enrolment

Time Lapse Findings

Galton [9] 1899 Inked
Impressions

1 0 year 0 - 4.5 years Recognition is feasible for children over 2.5 years

TNO [10] 2005 500 ppi 161 0 - 13 years N/A* Recognition is challenging for children below 4 years

BIODEV II [11] 2007 500 ppi 300 0 - 12 years N/A* Difficult to capture fingerprints for children < 12 years

UltraScan [12] 2006-
2009

500 ppi 308 0 - 18 years 3 years No insight for children below 5 years

Aadhar [13] 2009 500ppi 1.25B Enrolled at
5 years of age

N/A Recognition of children under 5 years of age is
challenging

Re-enrolled at
15 years of age

JRC [14] 2013 500 ppi 2611 0 - 12 years 2 - 4 years Recognition of children under 6 years of age is difficult

Jain et al. [15] 2016 1,270 ppi 309 0 - 5 years 1 year Feasible to recognize children over 6 months

Saggese et al. [16] 2019 3,400 ppi 142 0 - 6 months variable
length

High authentication accuracy (TAR = 85%-96% @ FAR =
0.1%), but unknown time lapse between enrollment and
authentication1.

Infant-Prints [2] 2019 1,900 ppi 194 0 - 3 mos. 3 mos. TAR = 66.7%, 75.4%, and 90.2% @ FAR = 0.1% for
infants enrolled at ages [0-3 months], [1-3 months], and
[2-3 months], respectively.

Preciozzi et al. [17] 2020 500 ppi 16,865 0 - 18 years 10 years TAR = 1.25%, 7.57%, and 15.61% @ FAR = 0.1% for
infants enrolled at ages [0-1 month], [1-2 months], and
[2-3 months], respectively.

This study 2020 1,900 ppi 315 0 - 3 months 1 year TAR = 92.8% @ FAR = 0.1% for infants enrolled at age of
2-3 months, respectively.

*No time span available for these studies.
1Scores from across all time lapses (weeks or months) are aggregated when computing the fingerprint recognition error rates.
This inflates the true longitudinal recognition performance.

Fig. 2. Face images (top row) and corresponding left thumb fingerprints (bottom row) of an infant,Meena Kumari, acquired on (a) December 16, 2018
(Meena was 3 months old), (b) December 18, 2018 (3 months, 2 days old), (c) March 5, 2019 (6 months old), and (d) September 17, 2019 (12 months
old) at Saran Ashram Hospital, Dayalbagh, India. Note that as Meena ages, fingerprint details emerge such as visible pores. This level of detail is
enabled by our 1,900 ppi reader.
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fingerprint recognition of children younger than 6
years of age is challenging.

� In 2016, Jain et al. acquired fingerprints of 309 children
in the age range of 0 to 5 years via a 1,270 ppi finger-
print reader [15]. They concluded that it is feasible to
recognize infants enrolled at the age of 6 months and
authenticated one year later.

� In 2019, Saggese et al. acquired fingerprint images
of 500 newborns and infants (less than 6 months of
age) at the Tijuana General Hospital in Mexico
using a custom built 3,400 ppi contactless finger-
print reader [16]. Although the authentication
results reported seem promising, the study does
not separate out the longitudinal recognition
performance.

� Perciozzi et al. reported extremely low authentication
performance of infants in a study published in
2020 [17]. The low performance can be attributed to
the fact that the infant’s fingerprints were captured
with a standard 500 ppi fingerprint reader.

� In our preliminary study [2], we collected finger-
prints of 194 infants via a custom 1,900 ppi finger-
print reader. We found that infants enrolled at
ages 0-3 months can be accurately and reliably
recognized 3 months later with TAR = 90% @
FAR = 0.1%.

Among the aforementioned studies, there are only three
studies [2], [16], [17] which investigate the feasibility of rec-
ognizing infants under the age of 3 months at enrollment. (i)
While the infant fingerprint recognition results reported
in [16] by Saggese et al. seem promising, they aggregate
scores from all time lapses (weeks or months) for computing
the fingerprint recognition error rates which inflates the true
longitudinal recognition performance. (ii) Preciozzi et al.
report poor infant recognition results (TAR = 15:61% @
FAR=0:1% for 2-3 month old age group). (iii) Our prelimi-
nary study on infant fingerprint recognition [2] utilized a
custom 1,900 ppi infant fingerprint reader, however, the
matcher was not designed to fully utilize the high-resolu-
tion imagery (instead using existing matchers designed for
500 ppi images). Furthermore, the matcher did not incorpo-
rate any enhancement or aging of the friction ridge pattern.
Finally, our preliminary study was conducted for 194
infants across a maximum time lapse of 3 months. In con-
trast, the current work includes 315 infants with longitudi-
nal data of up to a one year time lapse.

The key differences between the present and prior work
(specifically targeting infant recognition [2], [16], [17]) can
be concisely summarized as follows:

� The longitudinal infant authentication and search
performance has not been adequately addressed in
prior works. In [16], fingerprint pairs captured across
time lapses of different duration were lumped into
the same evaluation. In our preliminary study [2],
we only assessed the longitudinal performance for a
time lapse of 3-months. In the present study, we
extend this longitudinal evaluation out to a full 12
month time lapse (requiring further in-situ data
collection).

� Prior work proposed high-resolution fingerprint
readers, but did not exploit the high-resolution imag-
ery. Instead, the existing works utilize 500 ppi finger-
print matchers (designed for the adult population).
In the present work, we design a high-resolution fin-
gerprint matcher specifically for infants to further
improve the matching performance. Extensive abla-
tion studies show the impact of these algorithmic
improvements.

� This is the first comprehensive study to develop an
entire, end-to-end infant fingerprint recognition sys-
tem (including fingerprint reader, matcher, and
mobile application) (Fig. 3), and then rigorously
evaluate the system on a longitudinal, in-situ dataset
to successfully demonstrate that infants can be
enrolled at ages of less than 3 months, and then rec-
ognized after a time lapse of 12 months with accept-
able accuracy. The present study is more complete
than any of the existing studies targeting infant fin-
gerprint recognition [2], [16], [17].

The specific technical contributions of our approach are
as follows:

� Design and prototyping of a compact (1”�2”�3”),
low-cost (85 USD), high-resolution (1,900 ppi), ergo-
nomic fingerprint reader for infants (Fig. 4). This
reader is much smaller and better designed for
infants than our earlier open sourced fingerprint
reader proposed in [1]. We also prototype a contact-
less version of our fingerprint reader (Fig. 6) in order
to compare contact-based sensing technologies with
contactless sensing technologies when used for
infants.

� Collection of a longitudinal infant fingerprint data-
base comprised of 315 infants (0-3 months) over 4
separate sessions separated by 13 months (between
December 2018 and January 2020). The data was col-
lected at the Saran Ashram hospital, Dayalbagh,
India.

Fig. 3. Overview of the Infant-Prints system.
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� Afirst-of-its-kind, high resolution fingerprint matcher
for infantswhich incorporates infant fingerprint aging
and enhancement modules together with high resolu-
tion texture andminutiaematchers.

� The experimental results evaluated on our longitudi-
nal infant dataset indicate that indeed, it is possible
to enroll infants at ages younger than 3 months and
accurately recognize them months later based only
upon their fingerprints TAR = 95.2%@FAR = 1.0%,
TAR = 92.8%@FAR = 0.1% (for infants enrolled at
2-3 months of age, and authenticated 3 months later),

TAR = 85%@FAR = 1.0% for infants enrolled at
2-3 months of age, and authenticated a full year later.

3 HIGH-RESOLUTION FINGERPRINT READER

Almost all the fingerprint readers used in government and
commercial applications capture images at a resolution of
500 ppi. This resolution is sufficient to resolve adult finger-
print ridges that have an inter-ridge spacing of about 8-10
pixels. However, 500 ppi resolution is not adequate for
infant fingerprint capture since infant fingerprints have an
inter-ridge spacing of 4-5 pixels (sometimes the width of a
valley may be less than 1 pixel for an infant fingerprint cap-
tured at 500 ppi).

Some cheaper readers (50 USD) reach 1,000 ppi only after
upsampling the fingerprint image [32]. However, Jain et al.
[15] showed that even at a native resolution9 of 1,270 ppi,
fingerprint recognition of young infants (0-6 months) was
much lower than infants 6 months and older. The lack of an
affordable, compact and high resolution fingerprint reader
motivated us to construct a first-of-a-kind, 1,900 ppi finger-
print reader, called RaspiReader (Fig. 4), enabling capture
of high-fidelity infant fingerprints (Fig. 5), particularly those
in the age range 0-3 months. Unlike our prior efforts to build
a compact and cheap reader for adults [1], [33], both the cost
and size of the infant fingerprint reader has been signifi-
cantly reduced (from 180 USD to 85 USD and 400 � 400 � 400 to
100 � 200 � 300). Furthermore, the fingerprint reader is now
more ergonomic for infant fingerprints since it has a glass
prism towards the front of the reader (Fig. 4) rather than
flush with the top of the reader (as is the case with commer-
cial readers). Since infants frequently clench their fists and
have very short fingers, placing the prism out front signifi-
cantly eases placement of an infant’s finger on the platen
(Fig. 5b).

The entire design and 3D parts for the reader casing along
with step by step assembly instructions are open sourced.10

Fig. 5 shows that this custom 1,900 ppi fingerprint reader is

Fig. 4. Prototype of the 1,900 ppi compact (1” x 2” x 3”), ergonomic fingerprint reader. An infant’s finger is placed on the glass prism with the operator
applying slight pressure on the finger. The capture time is 500 milliseconds. The prototype can be assembled in less than 2 hours. See the video
at: https://www.youtube.com/watch?v=f8tYbE9Cwd0

Fig. 5. An infant’s fingerprints are acquired via (a) a 500 ppi commercial
reader (Digital Persona U.are.U 4500) and (b) our custom 1,900 RaspiR-
eader. The captured fingerprint images of the right thumb from the com-
mercial reader and the Infant-Prints reader for a 13 day old infant are
shown in (c) and (d), respectively. Manually annotated minutiae are
shown in red circles (location) with a tail (orientation). Blue arrows
denote pores on the ridges.

9. Native resolution is the resolution at which the sensor is capable
of capturing (no upsampling or downsampling).

10. https://github.com/engelsjo/RaspiReader

ENGELSMA ETAL.: INFANT-ID: FINGERPRINTS FOR GLOBALGOOD 3547



able to capture (500 millisecond capture time) the minute
friction ridge pattern of a 13 day old infant (both minutiae
and pores) with higher fidelity than the 500 ppi Digital Per-
sona U.are.U. 4500 reader.

We also prototype a contactless variant of our contact-
based infant fingerprint reader. Similar to [16], we adopt a
different size finger rest for different size thumbs. In this
manner, we are able to compare contact-based high resolu-
tion fingerprint readers with the high resolution contactless
sensing technology. Fig. 6 shows an example infant finger-
print captured by both our contactless and contact-based
fingerprint reader.

4 LONGITUDINAL FINGERPRINT DATASET

To effectively demonstrate the utility of an infant fingerprint
recognition system for the applications we have highlighted
above, we must be able to show its ability to recognize a
child based on fingerprints acquired months after the initial
enrollment. Such an evaluation requires a longitudinal fin-
gerprint dataset which contains fingerprint images of the
same infant over time at successive intervals. Collecting

such a dataset is a significant challenge as it requires the
cooperation of an infant’s parents in returning to the clinic
multiple times for participation in the study. It also requires
working with uncooperative infants who may become hun-
gry or agitated during the data collection (our ergonomic
fingerprint reader alleviated some of these challenges).

We have collected a dataset comprised of longitudinal
fingerprint images of 315 infants (all enrolled at 0-3 months
of age) at the Saran Ashram hospital in Dayalbagh, India
across four sessions (see Fig. 7):11

1) Session 1: December 12-19, 2018
2) Session 2: March 3-9, 2019
3) Session 3: September 12-21, 2019
4) Session 4: January 17-24, 2020
The infants were patients of the pediatrician, Dr. Anjoo

Bhatnagar (Fig. 7). Prior to data collection, the parents were
required to sign a consent form (approved by authors’ insti-
tutional review board and the ethics committee of Saran
Ashram hospital).

In a single session, we attempted to acquire a total of two
impressions per thumb (sometimes we captured more (e.g.,
4 impressions) or less (e.g., 1 impression) depending on the
cooperative nature of the infant). Although a modest incen-
tive was offered to parents for their data collection efforts, it
was often difficult for them to meet our fingerprint capture
schedule because of festivals, vacations, moving to a differ-
ent city or loss of interest in the project. For this reason, out
of the 315 total infants that we encountered, 25 infants were
present in all four sessions, 54 infants came to only three
sessions, 109 infants came to only two sessions, and 127
infants came to only one session. During collection, a dry or
wet wipe was used, as needed, to clean the infant’s finger
prior to fingerprint acquisition. On average, data capture
time, for 4 fingerprint images (2 per thumb) and a face
image per infant, was 3 minutes.12 This enabled a reason-
ably high throughput during the in-situ evaluation, akin to
the operational scenario in immunization and nutrition

Fig. 6. (a) Prototype of our 1,900 ppi contactless fingerprint reader. Dur-
ing capture, an infant’s finger is placed on top of a small, contactless,
rectangular opening (annotated in red) on the reader (the size of this
opening can be adjusted with different sized slots). A camera captures
the infant’s fingerprint from behind the rectangular opening. Examples of
a processed (segmented, contrast enhanced), contactless infant thumb-
print (2 months old) is shown in (b) and the same infant’s thumb-print
acquired via contact-based fingerprint reader in (c).

Fig. 7. Infant fingerprint collection at Saran Ashram hospital, Dayalbagh,
India. Pediatrician, Dr. Anjoo Bhatnagar, explaining longitudinal finger-
print study to the mothers while the authors are acquiring an infant’s fin-
gerprints in her clinic. Parents also sign a consent form approved by the
Institutional Review Board (IRB) of our organizations.

11. Our dataset collection was approved by the Institutional Review
Board (IRB) of Michigan State University and ethics committee of Day-
albagh Educational Institute and Saran Ashram Hospital. The finger-
print dataset cannot be made publicly available per the IRB regulations
and parental consents.

12. Data capture time includes parents signing the consent forms,
record-keeping, and pacifying non-cooperative infants.
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distribution centers. Longitudinal fingerprint dataset statis-
tics are given in Table 2.

5 INFANT FINGERPRINT MATCHING

State-of-the-art fingerprint feature extractors and matchers
are designed to operate on 500 ppi adult fingerprint images.
This limitation forced the authors in [15] to down-sample
the fingerprint images captured at 1,270 ppi to enable com-
patibility with COTS (Commercial Off The Shelf) matchers.
The authors in [16] also had to down-sample images cap-
tured at 3,400 ppi in order to make them compatible with
adult fingerprint matching systems. In our preliminary
study [2], we developed a custom Convolutional Neural
Network (CNN) based texture-matcher which directly oper-
ates on 1,900 ppi fingerprint images so that we did not have
to down-sample images and discard valuable discrimina-
tive cues available in high resolution images. The final
matching score in [2] was based on the fusion of (i) our
CNN-based custom texture matcher and (ii) two state-of-
the-art COTS matchers.

In this work, we (i) incorporate an enhancement and fin-
gerprint aging preprocessing module, (ii) improve our
high-resolution texture matcher from [2], and (iii) propose a
high-resolution minutiae extractor trained on manually
annotated infant fingerprint images. Combining these algo-
rithmic improvements with two state-of-the-art fingerprint
matchers (a latent fingerprint matcher, and a minutiae
matcher) enables us to improve our recognition accuracy
over that which was reported in our preliminary study [2].
In the following subsections, we discuss in more detail each
of these algorithmic improvements.

5.1 Minutiae Matcher

Our high resolution minutiae matcher is comprised of (i) a
high-resolution minutiae extractor, (ii) a minutiae aging
model, and (iii) the Verifinger v10.0 ISO minutiae matcher.
In the following subsections, we describe each of these algo-
rithmic components.

5.2 Minutiae Extraction

Recent approaches to minutiae extraction in the literature
have found that deep networks are capable of delivering
superior minutiae extraction performance in comparison to
traditional approaches [34], [35], [36], [37]. Furthermore, the
authors in [38] showed that deep learning based minutiae
extractors are particularly well suited for low quality

fingerprint images. Since infant fingerprints can also be
regarded as a “low-quality” fingerprint (heavy non-linear
distortion, motion blur from uncooperative subjects, small
inter-ridge spacing, very moist or dry fingers, dirty fingers),
we choose to adopt the deep learning based minutiae
extraction approach from [38] (with modifications to the
architecture and training procedure) for high-resolution
infant minutiae extraction. In our experiments, we demon-
strate that the high-resolution minutiae extractor is capable
of boosting the infant fingerprint recognition performance.

The core of the minutiae extraction algorithm proposed
in [38] is a fully-convolutional auto-encoder Mð:Þ which is
trained to regress from an input fingerprint image I 2 Rn�m

to a ground truth minutiae mapH 2 Rn�m�12 via Ĥ ¼ MðIÞ,
where Ĥ is the predicted minutiae map. The spatial loca-
tions of hot spots in the minutiae map indicate the locations
of minutiae points, and the 12 different channels of the
minutiae map encode the orientation of the minutiae points.
The parameters ofM are trained in accordance with:

Lminutiae ¼ jjĤ�Hjj22: (1)

This estimated 12-channel minutiae map Ĥ can be subse-
quently converted into a variable length minutiae set
fðx1; y1; u1Þ; . . . ; ðxN; yN; uNÞg with N minutiae points via an
algorithm which locates local maximums in the channels
(locations) and individual channel contributions (orienta-
tions) followed by non-maximal suppression to remove
spurious minutiae [38].

To obtain ground truth minutiae maps H for computing
Lminutiae, we encode a ground truth minutiae set for a given
infant fingerprint following the approach of [38] for latent
fingerprints. In particular, given a ground truth minutiae
set T ¼ fm1;m2; . . . ;mNg with N minutiae and mt ¼
ðxt; yt; utÞ,H at position ði; j; kÞ is given by:

Hði; j; kÞ ¼
XN

t¼1

Csððxt; ytÞ; ði; jÞÞ � Coðut; 2kp=12Þ; (2)

where Csð:Þ is the spatial contribution and Coð:Þ is the orien-
tation contribution of minutiae point mt to the minutiae
map at ði; j; kÞ. Note, Csð:Þ is based upon the euclidean dis-
tance of ðxt; ytÞ to ði; jÞ and Coð:Þ is based on the orientation
difference between ut and 2kp=12 as follows:

Csððxt; ytÞ; ði; jÞÞ ¼ exp � jjðxt; ytÞ � ði; jÞjj22
2s2

s

 !
(3)

Coðut; 2kp=6Þ ¼ exp � dfðut; 2kp=12Þ
2s2

s

� �
; (4)

where s2
s is a parameter controlling the width of the gauss-

ian, and dfðu1; u2Þ is difference in orientation between
angles u1 and u2:

dfðu1; u2Þ ¼ ju1 � u2j �p � u1 � u2 � p

2p� ju1 � u2j otherwise:

�
: (5)

An example infant fingerprint patch, and a few channels
of its 12 channel ground truth minutiae map are shown in
Fig. 9. An overview of our end-to-end minutiae extraction
algorithm is shown in Fig. 8. In contrast to the 500 ppi latent

TABLE 2
Infant Longitudinal Fingerprint Dataset Statistics

# Sessions 4
# Infants 315
Total # images 3,071
Age at enrollment 0 - 3 mos.
# Subjects with no time lapse* 127
# Subjects with 3 months lapse* 121
# Subjects with 6 months lapse* 29
# Subjects with 9 months lapse* 101
# Subjects with 12 months lapse* 41
Male to Female Ratio 43% to 57%

*Time lapse between enrollment and authentication image.
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fingerprint minutiae extractor in [38], we directly train our
minutiae extractor on infant fingerprint patches at 1,900 ppi
resolution. In thismanner, we do not remove any discrimina-
tive cues (via down-sampling) from the input infant finger-
print images prior to performing minutiae extraction.
Operating at a high resolution requires a deeper network
architecture than that which was utilized in [38]. Our net-
work architecture is shown in detail in Table 3. Note that
while we train our auto-encoder on infant fingerprint patches,
during test time, we input a full size infant fingerprint (of
varying width and height) since our architecture is fully-con-
volutional and as such, is amenable to different size inputs.

5.2.1 Manual Minutiae Markup for Training

As seen in the previous section from Equations (2), (3), (4),
and (5), obtaining ground truth minutiae maps H for train-
ing our minutiae map extraction network Mð:Þ requires a
ground truth minutiae set T for each input infant finger-
print. To obtain these ground truth minutiae sets for train-
ing, we manually annotate the minutiae locations and
orientations of 610 infant fingerprints in our dataset for
which we had limited longitudinal data (i.e., the infant only
visited 1 or 2 sessions). These fingerprints are separated
from our evaluation dataset. We manually annotated the
infant fingerprints using the GUI tool shown in Fig. 10. The

tool enables the addition of new minutiae and the removal
of spurious minutiae. To make the markup task easier, we
first automatically annotate the minutiae points on the 610
infant fingerprints using the Verifinger v10.0 minutiae
extraction SDK. Then, we manually refine the Verifinger
annotations with our markup GUI. Each manually anno-
tated fingerprint was reviewed multiple times by one of 4
experts in the field of fingerprint recognition.

While the 610 manually annotated infant fingerprints
provide an accurate ground truth dataset for training our
minutiae extraction network, it is still small for training a
deep network (Table 3). Therefore, rather than training our
minutiae extraction network from scratch on the 610 manu-
ally annotated infant fingerprints, we first pretrain our
minutiae extraction network on 9,508 infant/child finger-
prints collected in [30] and coarsely annotated with minu-
tiae using the Verifinger v10.0 minutiae extractor. After
pretraining our minutiae extraction network on these 9,508
coarsely annotated (using Verifinger) fingerprints, we
finally fine-tune all parameters of our network (Table 3)
using our more accurate 610 manually annotated ground
truth infant fingerprint images (560 used for training, 50

Fig. 8. Overview of the minutiae extraction algorithm. An input fingerprint of any size (n�m) is passed to the minutiae extraction network (Table 3).
The network outputs a n�m� 12minutiae mapH which encodes the minutiae locations and orientations of the input fingerprint. Finally, the minutiae
map is converted to a minutiae set fðx1; y1; u1Þ; . . . ; ðxN; yN ; uN Þg ofN minutiae.

Fig. 9. An example infant fingerprint patch (a) and the corresponding
minutiae map (b). Note, we only show 3 channels of the 12 channel
minutiae map here for illustrative purposes (red channel is the first chan-
nel, green is the fifth channel, and blue is the ninth channel). Given the
full 12 channels of the minutiae map in (b), we can compute the minutiae
locations ðx; yÞ and orientations u of the 1,900 ppi fingerprint patch in (a).

TABLE 3
Minutiae Extraction Network

Type Output Size Filter Size, Stride

Convolution 256� 256� 64 4� 4, 1
Convolution 128� 128� 64 4� 4, 2
Convolution 64� 64� 128 4� 4, 2
Convolution 32� 32� 256 4� 4, 2
Convolution 16� 16� 384 4� 4, 2
Convolution 8� 8� 512 4� 4, 2
Convolution 8� 8� 1024 4� 4, 1
Convolution 4� 4� 1024 4� 4, 2
Deconvolution 4� 4� 1024 4� 4, 1
Deconvolution 8� 8� 512 4� 4, 2
Deconvolution 16� 16� 384 4� 4, 2
Deconvolution 32� 32� 256 4� 4, 2
Deconvolution 64� 64� 128 4� 4, 2
Deconvolution 128� 128� 64 4� 4, 2
Deconvolution 256� 256� 32 4� 4, 2
Deconvolution 256� 256� 12 4� 4, 1

y During training, input patches are 256� 256. During testing, the input can
be of any size (the network is fully convolutional).
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used for validation). We optimize our network parameters
using the Adam optimizer and weight decay set to 4� 10�5.
When training the network on the 9,508 coarsely annotated
training data, we use a learning rate of 0.01. When fine-tun-
ing our network (all parameters fine-tuned) on our manu-
ally annotated fingerprint images, we reduce the learning
rate to 0.0001. We use the minutiae detection accuracy on
our 50 manually annotated validation fingerprints as a stop-
ping criteria for the training. Finally, our network is trained
on 256� 256 patches to increase the number of training
samples, and we employ data augmentations such as ran-
dom rotations, cropping, translations, and flipping.

The efficacy of our high-resolution minutiae extraction
algorithm is shown in Fig. 12. In comparison to Verifinger,
our algorithm extracts significantly fewer spurious minu-
tiae, while detecting nearly all of the true minutiae loca-
tions. We show in subsequent experiments that this results
in a boost in infant fingerprint recognition performance.

5.2.2 Minutiae Aging

After extracting a minutiae set from an infant fingerprint
with our high-resolution minutiae extractor, we further

process the minutiae set via a minutiae aging model
(Fig. 11). The authors in [17] showed that by linearly scal-
ing an infant’s fingerprint image, it could be better
matched to an older fingerprint impression of the same
infant. Note, that although the aging model in [17] was
shown to be beneficial for infant recognition, it did not
result in desired levels of recognition accuracy due in
part to the fact that the infant fingerprint images were
captured at 500 ppi.

Rather than scaling an infant’s fingerprint image as was
done in [17], we directly scale the already extracted minutiae
set. More formally, given a scale factor � and a minutiae set
T of N minutiae, where T ¼ fðx1; y1; u1Þ; . . . ; ðxN; yN; uNÞg,
our scaled minutiae set T̂ is given by:

T̂ ¼ fð�x1; �y1; u1Þ; . . . ; ð�xN; �yN; uNÞg: (6)

To determine the scale factor � at which an infant’s fin-
gerprint pattern grows as they age, we select 82 pairs of our
610 manually annotated infant fingerprints for which we
have longitudinal impressions. The range of the time lapse
DT (in weeks) for these 82 pairs of fingerprints is 12 � DT �
40 (mean DT ¼ 34:3� 10:3). We then empirically evaluated
different scalar factors in increments of 0.05 such that the
minutiae matching accuracy (as computed by Verifinger
v10 SDK) on these validation images was maximized. We
found that applying a scalar factor of � ¼ 1:1 to infant
images enrolled at less than 3 months provided the best rec-
ognition performance.

We also tried an adaptive aging model where the sca-
lar factor was dependent upon the enrollment age and
the elapsed time, but found no improvement in perfor-
mance (likely because the majority age group in our
experiments is infants enrolled between 2-3 months and
recognized 3 months later, where the simple scalar value
of � ¼ 1:1 suffices). Given similar performance, we kept
the simpler static scalar aging model as opposed to the
adaptive aging model.

An example of an infant minutiae set T and its corre-
sponding aged minutiae set T̂ is shown in Fig. 11. In our
experiments, we quantitatively demonstrate that this scal-
ing of the enrollment minutiae points provides a boost to
our recognition performance.

Fig. 10. View of the manual minutiae markup/editing software used to
markup minutiae locations on a subset of infant fingerprint images.
These markups were later used as ground truth to train our high resolu-
tion infant minutiae extractor. The fingerprint on the left (blue annota-
tions) is coarsely annotated with Verifinger v10 SDK to help speed up
the annotation process. The fingerprint on the right (red annotations)
shows the manually edited minutiae.

Fig. 11. Effects of aging. (a) Acquired 3 month old enrollment image (orange) is overlaid on a 1 year old probe image (blue). (b) An aged 3 month old
enrollment image (orange) is overlaid on a 1 year old probe image (blue). (c) 3 month old enrollment minutiae set (green) is overlaid on a 1 year old
probe minutiae set (red). (d) An aged 3 month old enrollment minutiae set (green) is overlaid on a 1 year old probe minutiae set (red). Following aging
(b, d), the enrollment image and probe image (and corresponding minutiae sets) overlap better.
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5.2.3 Minutiae Match Score

After extracting a minutiae set T (via our high-resolution
minutiae extractor) and aging T into T̂ , we compute a minu-
tiae matching score sm between a probe infant fingerprint
and an enrolled infant fingerprint using the Verifinger v10
ISO minutiae matcher.

5.3 Texture Matcher

Similar to latent fingerprints, infant fingerprints are often of
poor quality and as such are difficult to accurately extract
minutiae from (evenwith our high resolutionminutiae extrac-
tor). Therefore, in addition to a minutiae match score, we also
incorporate a texturematching score st using a state-of-the-art
texture fingerprint matcher [39].13 Engelsma et al. [39] pro-
posed a CNN architecture, called DeepPrint, embedded with
fingerprint domain knowledge for extracting discriminative
fixed-length fingerprint representations. Inspired by the suc-
cess of DeepPrint to learn additional textural cues that go
beyond just minutiae points, we adopt this matcher for infant
fingerprint recognition. In particular, we modify the Deep-
Print network architecture as follows: (i) the input size of
448� 448 is increased to 1024� 1024 (through the addition of
convolutional layers) to support 1,900 ppi images and (ii) the
parameters of the added convolutional layers and the last
fully connected layer are re-trained on the 1,270 ppi
(upsampled to 1,900 ppi) longitudinal infant fingerprints

acquired by Jain et al. in [15] combined with 610 of our 1,900
ppi imageswhichwe set aside for training. In total,we re-train
the network with 9,683 infant fingerprint images from 1,814
different thumbs. An overview of our modifications to Deep-
Print is shown in Fig. 13.

During the authentication or search stage, the CNN
accepts a 1,900 ppi infant fingerprint as input and outputs a
192-dimensional fixed-length representation of the finger-
print. This representation can be compared to previously
enrolled representations via the cosine distance between
two given representations at 10 million comparisons/sec-
ond on an Intel i9 processor with 64 GB of RAM. More for-
mally, given an enrollment representation e 2 R192 and a
probe representation p 2 R192, a texture matching score st is
computed as the inner product between e and p:

st ¼ eTp: (7)

Note, in our preliminary study [2], we also used a deep
learning based texture matcher similar to DeepPrint, how-
ever, we did not incorporate minutiae domain knowledge
into the texture matcher as is done in DeepPrint (shown in
Fig. 13). Adopting the strategy of DeepPrint in incorporat-
ing minutiae domain knowledge into the deep network fur-
ther improves the infant recognition performance. We show
this quantitatively in the experimental results.

5.4 Latent Fingerprint Matcher

Finally, in addition to a state-of-the-art minutiae matcher
(supplemented by our high resolution minutiae extractor)

Fig. 12. Top row: Verifinger minutiae detections; Bottom row:Minutiae detections from our high-resolution minutiae extractor. Manually marked minu-
tiae are annotated in red. Note that Verifinger detects many of the true minutiae, but also extracts a significant number of spurious minutiae. Our pro-
posed minutiae extractor has slightly lower detection accuracy (of true minutiae) than Verifinger, however, it extracts significantly fewer spurious
minutiae. We further compare the two approaches quantitatively in our experimental results.

13. Although DeepPrint also incorporates minutiae domain knowl-
edge into the fixed-length representation, we refer to it as a texture
matcher since minutiae points are not explicitly used for matching.
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and the fine-tuned texture matcher, we include a state-
of-the-art latent fingerprint matcher14 to the final infant
fingerprint recognition algorithm. Before using the latent
fingerprint matcher to enroll a template, we first include
two preprocessing steps: (i) enhancement, and (ii) aging.
These preprocessing steps are further described in the fol-
lowing subsections.

5.4.1 Enhancement

Due to the low quality of the infant fingerprints (motion
blur, wet, dry), we incorporate an enhancement module to
improve the sharpness and clarity of the infant friction ridge
pattern. In particular, we incorporate a state-of-the-art
image super resolution model, Residual Dense Network
(RDN) [41]. To retrain RDN for infant fingerprint enhance-
ment, we first add random noise (random kernel) to the
training dataset (9,683 images from [15]), followed by a
gaussian blur to simulate various types of noise in the infant
fingerprint images. Then, we retrain the RDN network (8x
version with a modified stride length) to regress to the clean
infant fingerprint images. An example of an infant finger-
print before and after enhancement is shown in Fig. 14.

5.4.2 Image Aging

In a similar manner to the strategy we used to age our
extracted minutiae sets, we age the enhanced fingerprint
images prior to passing them to the latent fingerprint
matcher. The COTS latent matcher SDK does not accept a
minutiae set and as such, we must directly age the images
prior to passing them to the matcher. Therefore, if an
infant’s fingerprint image is captured at an age of less than
3 months, we resize the image with bicubic interpolation by
a scalar factor of � ¼ 1:1. The scalar factor is the same as
that used to scale our minutiae sets. Finally, after enhance-
ment and image aging, we finish the latent preprocessing
by resizing all images by a scalar of 0.5 in order to bring the
1,900 ppi fingerprint images to similar size as the adult

fingerprint images the latent matcher is designed to operate
on (this same procedure was utilized in [15]).

After preprocessing the infant fingerprint images via
enhancement and aging, we can enroll the infant images via
the latent SDK, and subsequently compute a match score sl.

5.5 Final Match Score

Our final match score sf is a fusion of a minutiae matcher,
texture matcher, and latent matcher. In particular, given our
minutiae matching score of sm, our texture match score st as
defined in Equation (7), and our latent match score sl, our

Fig. 14. Infant fingerprint (a) before enhancement and (b) after enhance-
ment. Looking inside the small window (red square) we can see that the
enhanced infant fingerprint (b) has noticeably improved sharpness and
clarity throughout the friction ridge pattern when compared to (a).

Fig. 13. Overview of the Infant-Prints texture matcher. We modify DeepPrint [39] to accept 1,900 ppi high resolution infant fingerprint images. The net-
work is pretrained on adult fingerprint images and then fine-tuned (red layers) with the infant dataset collected in [15].

14. We cannot release the name of the matcher because of a NDA,
but it is one of the top performing algorithms in the NIST ELFT
evaluation [40].
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final match score sf is computed by first normalizing each
score (min-max normalization) to a range of ð0; 1Þ and then
performing sum score fusion via:

sf ¼ �m � sm þ �t � st þ �l � sl; (8)

where �m, �t, and �l are set to 0:6; 0:1; 0:3 using our valida-
tion set of 610 manually marked fingerprint images in con-
junction with a grid search.

6 EXPERIMENTAL RESULTS

In our experimental results, we first show the authentication
and search performance for all the infants in our dataset
where enrollment occurs during 0-3 months of age, and
authentication or search commences 3 months later. We first
focus on a 3 month time lapse for the following reasons. (i)
Most of our longitudinal data (121 subjects) has a time lapse
of 3 months. (ii) Jain et al. already show that once infants
reach the age of 6 months, they can be enrolled and recog-
nized a year later. In this work, our primary aim is to bridge
the gap between 0-3 months (when first time vaccinations
commence) and 6 months. If we can effectively recognize
the infants enrolled at 2-3 months and authenticated or
searched at 5-6 months, we can re-enroll the infants and
continue to recognize the infants longitudinally as shown
in [15].

We conclude the experiments by showing the authentica-
tion and search performance of Infant-Prints when the time
lapse between the enrollment and probe images is extended
to a year.

6.1 Experimental Protocol

To boost the infant recognition performance, we fuse scores
from both of the infant’s thumbs and also across the multi-
ple impressions captured during the enrollment session and
authentication or search session. For example, if we success-
fully captured 2 fingerprint images of each thumb in the
enrollment session and authentication session, we would
compute a total of 8 scores using Equation (8). These 8
scores are then fused using average fusion.

We also utilize the gender of the infant to further improve
the recognition performance. In particular, if two infants
have a different gender, we set thematching score to 0.

All imposter scores are computed by comparing impres-
sions from one subject (both thumbs) in a particular session

to impressions from another subject (both thumbs) in
another session (making sure to only compare impressions
if they belong to the same thumb).

6.2 Infant Authentication

Table 4 shows the authentication performance of the differ-
ent matchers (as well as the fused matchers) on infants
enrolled between the ages of 0-3 months, and authenticated
3 months later. From these results, we observe that none of
the individual matchers perform particularly well on any of
the age groups when run standalone. However, after fusing
the 3 matchers together, we start to get reliable authentica-
tion results when the enrollment age is 2-3 months. While
the longitudinal authentication results are not yet robust for
the age groups of 0-1 months and 1-2 months, we note that
vaccinations commence by the age of 3 months. By obtain-
ing promising authentication results at enrollment ages of
less than 3 months, we show that fingerprint authentication
of infants is indeed a potential solution for providing infants
an identity for life.

6.3 Infant Search

Table 5 shows the Rank 1 search accuracy of Infant-Prints on
infants enrolled between the ages of 0-3 months, and
searched 3 months later. The gallery size for our search
experiment includes every infant which was enrolled in our
study (315 infants). We acknowledge that this gallery size is
small, however, we note that (i) obtaining a large gallery of
infants would require significant resources, man-hours, and
IRB regulations and approvals, and (ii) in several applica-
tions, it is very possible that the gallery sizewould be of simi-
lar size to ours. For example, if the clinic which we collected
our data at were to use Infant-Prints, they would only need
to manage a gallery of 315 infants, since that is the total num-
ber of infants visiting the clinic in a 1 year time period.

We note from the results of Table 5 that Infant-Prints is able
to enroll infants at an age of 2-3 months, and search them
3 months later with a Rank 1 search accuracy of 90.4 percent.
While work remains to be done to further improve the perfor-
mance to say 99 percent, we note that this is the first study to
show promising longitudinal search performance for infants
enrolled at ages as young as 2months.

It can also be seen from Table 5 that each individual
matcher is able to obtain the same Rank-1 search perfor-
mance (for the 2-3 month enrollment group) as the fused

TABLE 4
Infant Authentication Accuracy (0� 3Months at Enrollment With 3 Month Time Lapse Between Enrollment and Authentication)

Algorithm Enrollment Age: 0-1 months
(17 subjects)

TAR @ FAR=0.1%, FAR=1.0%

Enrollment Age: 1-2 months
(36 subjects)

TAR @ FAR=0.1%, FAR=1.0%

Enrollment Age: 2-3 months
(83 subjects)

TAR @ FAR=0.1%, FAR=1.0%

DeepPrint [39] 17.6%, 29.4% 27.8%, 58.3 45.8%, 68.7%
Verifinger1 41.2%, 58.8% 47.2%, 55.6% 79.5%, 86.7%
Latent Matcher2 41.2%, 47.1% 50.0%, 61.1% 84.3%, 91.6%
DeepPrint + Verifinger 52.9%, 64.7% 55.6%, 75.0% 86.7%, 89.2%
DeepPrint + Latent Matcher 41.2%, 58.8% 52.8%, 72.2% 85.5%, 91.6%
Verifinger + Latent Matcher 52.9%, 64.7% 58.3%, 75.0% 91.6%, 92.8%
DeepPrint + Verifinger + Latent Matcher 64.7%, 70.6% 63.9%, 83.3% 92.8%, 95.2%

1Minutiae are extracted with our high-resolution minutiae extractor, then aged and fed into the Verifinger v10 ISOMatcher.
2Images are enhanced, aged, and then fed into a state-of-the-art COTS Latent Matcher.
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matcher. We acknowledge that this can likely be explained
by the small gallery size, i.e., each individual matcher is suf-
ficient to accurately retrieve the fingerprints from the
smaller gallery. Given a larger gallery, it is likely that the
fused matcher would be necessary to maintain accurate
search performance. Obtaining a large scale infant dataset is
an area of future research.

We also highlight that DeepPrint is able to obtain much
higher search performance than authentication performance
(Table 4 versus Table 5). This can be attributed to DeepPrint

often times outputting high imposter scores (creating false
accepts and reducing the authentication accuracy, whereas
in search high imposters are not as problematic as long as
the true mate gives the highest score).

6.4 Ablations

To highlight the hardware and algorithmic contributions of
Infant-Prints, we show an algorithmic ablation study in
Tables 6, 7, 8, and 9, and a hardware ablation study in
Table 10.

From Table 6, we see the performance of the “fused
matcher” (Verifinger + COTS Latent Matcher + DeepPrint)
following every algorithmic improvement (high-resolution
minutiae extraction, aging, enhancement, finetuning Deep-
Print, and gender meta-data). Notably, each algorithmic
improvement contributes to the overall best performance

TABLE 6
Ablated Infant Authentication Accuracy (0� 3Months at Enrollment With 3 Month

Time Lapse Between Enrollment and Authentication)

Algorithmy Enrollment Age: 0-1 months
(17 subjects)

TAR @ FAR=0.1%, FAR=1.0%

Enrollment Age: 1-2 months
(36 subjects)

TAR @ FAR=0.1%, FAR=1.0%

Enrollment Age: 2-3 months
(83 subjects)

TAR @ FAR=0.1%, FAR=1.0%

w/oHigh Resolution Minutiae Extractor 35.3%, 70.6% 63.9%, 83.3% 90.4%, 95.2%
w/o Aging and Enhancement 47.1%, 64.7% 50.0%, 72.2% 86.7%, 92.8%
w/o Finetuning DeepPrint 58.8%, 64.7% 58.33%, 69.4% 90.4%, 95.2%
w/o Gender 58.8%, 64.7% 52.8%, 80.6% 89.2%, 94.0%
w/o All1 35.3%, 47.1% 44.4%, 66.7% 86.7%, 92.8%
with All2, 3 64.7%, 70.6% 63.9%, 83.3% 92.8%, 95.2%

1Algorithm used in our preliminary study [2].
2Minutiae are extracted with our high-resolution minutiae extractor, then aged and fed into the Verifinger v10 ISOMatcher.
3Images are enhanced, aged, and then fed into a state-of-the-art COTS Latent Matcher.
yEach row removes only the modules mentioned in that row.

TABLE 5
Infant Search Accuracy (0� 3Months at Enrollment With 3 Month Time Lapse Between Enrollment and Search)

Algorithm Enrollment Age: 0-1 months
(17 subjects)

Rank 1, Rank 5

Enrollment Age: 1-2 months
(36 subjects)

Rank 1, Rank 5

Enrollment Age: 2-3 months
(83 subjects)

Rank 1, Rank 5

DeepPrint [39] 52.9%, 58.8% 63.9%, 75.0 90.4%, 92.8%
Verifinger1 58.8%, 64.7% 69.4%, 77.8% 90.4%, 91.6%
Latent Matcher2 52.9%, 58.8% 63.9%, 75.0% 90.4%, 92.8%
DeepPrint + Verifinger 58.8%, 64.7% 69.4%, 77.8% 90.4%, 91.6%
DeepPrint + Latent Matcher 52.9%, 58.8% 63.9%, 75.0% 90.4%, 92.8%
Verifinger + Latent Matcher 58.8%, 58.8% 72.2%, 80.6% 90.4%, 91.6%
DeepPrint + Verifinger + Latent Matcher 58.8%, 58.8% 72.2%, 77.8% 90.4%, 91.6%

1Minutiae are extracted with our high-resolution minutiae extractor, then aged and fed into the Verifinger v10 ISOMatcher.
2Images are enhanced, aged, and then fed into a state-of-the-art COTS Latent Matcher.

TABLE 7
Ablated Verifinger Performance

Algorithm 0-1 months2

(17 subjects)
1-2 months
(36 subjects)

2-3 months
(83 subjects)

Verifinger 17.6%1 36.1% 74.7%

Verifinger + Aging 23.5% 44.4% 74.7%

Verifinger + Aging
+ Enhancement

29.4%
(35.3%)4

52.8%
(63.9%)

85.5%
(90.4%)

Verifinger + Aging
+ Enhancement
+ HRMinutiae3

41.2%
(64.7%)

47.2%
(63.9%)

79.5%
(92.8%)

1TAR @ FAR = 0.1% after a time lapse of 3 months from enrollment age.
2Indicates enrollment ages (authentication occurs 3 months later).
3HR Minutiae denotes a minutiae set extracted by our high-resolution, infant
minutiae extractor, and fed into Verifinger’s matcher.
4Performance when fused with other matchers (shown in parenthesis) demon-
strates that although HR Minutiae does not help the stand-alone performance
of Verifinger, it does help when fusing with the other matchers. This is
explained further in the text.

TABLE 8
Ablated COTS Latent Matcher (LM) Performance

Algorithm 0-1
months2

(17 subjects)

1-2
months

(36 subjects)

2-3
months

(83 subjects)

COTS LM3 35.3%1 41.7% 77.1%
COTS LM + Aging 35.3% 44.4% 80.7%
COTS LM + Aging
+ Enhancement

41.2% 50.0% 84.3%

1TAR @ FAR = 0.1% after a time lapse of 3 months from enrollment age.
2Indicates enrollment ages (authentication occurs 3 months later).
3COTS LM does not enable using our own HR minutiae set.
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shown in the final row. We also note that our algorithm (last
row of Table 6) is significantly improved over our previous
algorithm (second to last row of Table 6) used in our prelim-
inary study [2].

In Tables 7 and 8 we note that aging and enhancement
both improve the “stand-alone” performance of Verifinger
and the COTS latent matcher. Although our high-resolution
minutiae extractor does not improve the stand-alone perfor-
mance of Verifinger (“HR Minutiae” in Table 7), it does
help when fusing Verifinger with the other matchers (as
shown in parenthesis). The reason for this is because the
Verifinger minutiae extractor performs worse than our HR
minutiae extractor on low quality, noisy fingerprints, but
better than our minutiae extractor on higher quality images.
By improving Verifinger on the lower quality image pairs
with our HR minutiae extractor, we can improve the fused
matching performance, since the other matchers are already
sufficient to hold the matching performance on the higher
quality pairs. This can be seen visually in Fig. 15. When
extracting minutiae with Verifinger Fig. 15a, many spurious
minutiae are marked, and Verifinger is unable to establish
any true minutiae correspondences between the enrollment
image and the probe image. In contrast, our minutiae
extractor extracts the minutiae more reliably on this low
quality fingerprint pair Fig. 15b, enabling Verifinger to
establish enough minutiae correspondences to flip the
example pair from a False Reject to a True Accept.

Table 9 shows the ablated performance of DeepPrint.
Finetuning the model on infant fingerprints again boosts
the performance. Although the performance of DeepPrint is
lower than the other matchers stand-alone, it still boosts the
overall matching performance (Table 4) when fused with
other matchers due to the complementary texture features it
extracts. We do not age fingerprints prior to DeepPrint
extraction since DeepPrint is trained on images of varying
scale as a data augmentation method during training. Fur-
thermore, we do not enhance images prior to DeepPrint
extraction as our goal is to have DeepPrint extract comple-
mentary textural features which may be discarded post-
enhancement.

Finally, we show in our hardware ablation study in
Table 10 that our contact-based high-resolution (1,900 ppi)
fingerprint reader enables higher infant fingerprint authen-
tication performance than a COTS 500 ppi contact-based
reader (Digital Personna). We note that there are fewer sub-
jects in Table 10 than Table 4. This is because Table 10 only
considers those subjects which were collected on both the
MSU RaspiReader and the Digital Persona reader. The dif-
ference in subject counts on the MSU RaspiReader and the
Digital Persona reader can be attributed to failure to cap-
tures on the Digital Persona (often times the ergonomics of
the Digital Persona reader Fig. 5a prevented us from imag-
ing the infant’s fingerprints before the infant became too
distressed).

We also show in Fig. 16 that the contact-based RaspiR-
eader genuine and imposter scores are much more sepa-
rated than the contactless-based RaspiReader (TAR =
72.9% versus TAR = 35.6% @ FAR = 1.0%). We show score

Fig. 15. Flipping a False Reject case to a True Accept by using our high-
resolution minutiae extractor. (a) Minutiae are both extracted and
matched using Verifinger. The significant number of spurious minutiae
extracted by Verifinger render it impossible for Verifinger to establish
minutiae correspondences. (b) Minutiae are extracted using our high-
resolution minutiae extractor and subsequently fed into Verifinger.
Because our minutiae extractor is much more resistant to spurious minu-
tiae (on infant fingerprints) than Verifinger’s minutiae extractor, the Veri-
finger matcher is able to establish enough true minutiae
correpondences to flip this False Reject to a True Accept. Quantitatively
speaking, the Verifinger match score is improved from 23 to 48.

TABLE 9
Ablated DeepPrint Performance

Algorithm 0-1
months2

(17 subjects)

1-2
months

(36 subjects)

2-3
months

(83 subjects)

DeepPrint 11.8%1 22.2% 41.0%
DeepPrint + Finetuning 17.6% 27.8% 45.8%

1TAR @ FAR = 0.1% after a time lapse of 3 months from enrollment age.
2Indicates enrollment ages (authentication occurs 3 months later).

TABLE 10
Ablated Fingerprint Reader Authentication Results

Reader 0-1
months2

(12 subjects)

1-2
months

(31 subjects)

2-3
months

(73 subjects)

Digital Persona (500 ppi) 0%1 35.5% 52.1%
MSU RaspiReader (1,900 ppi) 58.3% 64.5% 93.2%3

1TAR @ FAR = 0.1% after a time lapse of 3 months from enrollment age.
2Indicates enrollment ages (authentication occurs 3 months later).
3Differs from Table 4 because of a different number of subjects.
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histograms (of single finger comparisons) to compare these
two readers since we only utilized the contactless reader
during our last collection session for a limited number of
subjects. Our findings of better separation between the
contact fingerprint pairs than the contactless fingerprint
pairs contradict the study of [16] which found that high-
resolution, contactless infant fingerprints outperformed
high-resolution contact-based infant fingerprints. We
found it very difficult to match contactless infant finger-
prints since contactless fingerprints have a perspective
deformation (certain parts of the finger are further from
the camera than others), and the contrast is lower than
FTIR fingerprint images. Similar observations about the

difficulty of matching contactless fingerprint images have
been noted in the literature [42]. In an effort to improve
the contactless matching performance, we fine-tuned
DeepPrint on 23,416 contactless fingerprints from 3,276
fingers from contactless databases released in [42], [43],
[44], [45], [46], [47]. We also attempted to normalize the
ridge spacing of the contactless fingerprints as was done
in [16]. The fine-tuning did improve the contactless match-
ing performance, but did not bridge the gap to the contact
fingerprint matching performance.

Example of failure cases (False Accept, False Reject) are
shown in Fig. 17. These images highlight the difficulty and
challenges of doing accurate infant fingerprint recognition
over time (moisture, distortion, small inter-ridge spacing,
fingerprint aging).

6.5 Longitudinal Recognition

As a final study, we show the longitudinal search accuracy
(Table 11) and authentication accuracy (Table 12) for infants
enrolled at 2-3 months. For this experiment, we selected 20
infants from our total of 315 which were present in all 4 ses-
sions of the data collection and were 2-3 months of age at

Fig. 16. Score Histograms comparing the contact-based RaspiReader
with the contactless RaspiReader (single finger performance). Using a
contact-based reader shows much better score separation than the con-
tactless reader (TAR=72.9% versus TAR=35.6%@ FAR=1.0%).

Fig. 17. Example Infant-Prints failure cases. (a, b) Example of a False
Accept due to the similar friction ridge patterns, and the moisture in the
enrollment image (a). (c, d) Example of a False Reject due to the motion
blur of the uncooperative infant (d). These images highlight several of
the challenges in infant fingerprint recognition.

TABLE 11
Longitudinal Search Results

Time Lapse: 3 months Time Lapse: 9 months Time Lapse: 12 months

95%1, 2 90% 90%

1Reporting Rank 1 Search Accuracy (Gallery of 315 Infants).
2Differs from Table 5 because of a different number of subjects.

TABLE 12
Longitudinal Authentication Results

Time Lapse: 3 months Time Lapse: 9 months Time Lapse: 12 months

95%1,2 90% 85%

1Reporting TAR @ FAR = 0.1%.
2Differs from Table 4 because of a different number of subjects.
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the first time enrollment (since our earlier studies showed
that 2-3 months is the age at which recognition first becomes
feasible). Although we have more subjects at individual
time lapses, we chose the 20 infants which were present in
all 4 sessions so that we can observe the impact that time
has on the recognition performance whilst fixing the sub-
jects used in the experiments.

Tables 11 and 12 show that the authentication and search
performance stays relatively stable over time. In particular,
from 3 months of elapsed time to 9 months of elapsed time,
only one infant drops off from being properly searched or
authenticated. From 9 months to 12 months, the search
accuracy remains unchanged, while only one fewer infant is
unable to be authenticated.

Notably, these are the first results to show that it is possi-
ble to enroll infants at 2 months old and authenticate them
or search them a year later with relatively high accuracy.
This highlights the applicability of fingerprints to address
the challenges of this paper. Namely, can we recognize an
infant from their fingerprints in order to better facilitate accurate
and fast delivery of vaccinations and nutritional supplements to
infants in need.

7 CONCLUSION

A plethora of infants around the world continue to suffer
and die from vaccine related diseases and malnutrition. A
major obstacle standing in the way of delivering the vacci-
nations and nutrition needed to the infants most in need is
the means to quickly and accurately identity or authenticate
an infant at the point of care. To address this challenge, we
proposed Infant-Prints, and end-to-end infant fingerprint
recognition system. We have shown that Infant-Prints is
capable of enrolling infants as young as 2 months of age,
and recognizing them an entire year later. This is the first
ever study to show the feasibility of recognizing infants
enrolled this young after this much time gap. It is our hope
that this feasibility study and Infant-Prints motivate a
strong push in the direction of fingerprint based infant fin-
gerprint recognition systems which can be used to alleviate
infant suffering around the world. In doing so, we believe
that this work will make a major dent in Goal #3 of the
United Nations Sustainable Development Goals, namely,
“Ensuring healthy lives and promoting well-being for all, at all
ages.”
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